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We propose and examine theoretically a four-wave-mixing experiment in which excitons in Cu2O are
pumped directly into a state with wave vector k=0 by two counter-propagating cross-polarized laser pulses and
which is subsequently probed by a third time-delayed pulse. Approximate analytical solutions of the time
evolution equations are found which describe the time dependence of the exciton and photon densities. Most
importantly, we obtain the dependence of the resulting phase-conjugated signal versus the delay time td

between the probe and pump pulses. It is shown that the total number of photons generated in the course of the
experiment is proportional to the areas of all three incoming pulses. The dependence of the resulting time-
integrated signal on the delay time td is the same as the exciton density dependence on the time t. Hence, one
may directly study the time evolution of the exciton condensate. The approximate analytical results are com-
pared with a numerical solution of the evolution equations for a wide range of incident pulse intensities. It is
noted that an exciton condensate arising by an alternate route can also be probed through a phase-conjugated
two-photon process.
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I. INTRODUCTION

Cuprous oxide has long been considered as a possible
candidate for Bose-Einstein condensation �BEC� of
excitons.1–4 For the same density, the relatively small exciton
mass would allow condensation at temperatures much higher
than those associated atomic systems such as liquid helium
or a gas of trapped alkali-metal atoms.5 Since the first ex-
periment showing Bose-Einstein statistics of orthoexcitons in
Cu2O,6 attempts have been made to observe BEC in this
nearly ideal Bose gas system.7–9 Bose-Einstein condensation
of paraexcitons was reported by Lin and Wolfe10 but the
interpretation remains uncertain. However BEC of the
orthoexcitonic system has not been reported, possibly due to
ortho-para conversion restricting the achievable densities.
Recently Jang and Wolfe11 proposed another decay channel:
the formation of biexcitons followed by recombination.

Previous investigations6–9 have primarily involved one-
photon absorption. Electron-hole pairs generated by this pro-
cess relax toward the 1s state of the lowest excitonic series.
The 1s level is split by the electron-hole exchange interac-
tion into triply degenerate �25

+ orthoexciton states and a �2
+

singlet paraexciton state. One decay mode of the 1s orthoe-
xcitons involves the creation of a parity-conserving �12

− op-
tical phonon. The line shape of the associated luminescence
spectrum then provides a direct way to measure the velocity
distribution of the nearly free-exciton gas.6,8–10 The relax-
ation of optically generated electron-hole pairs results in a
temperature rise of the exciton gas �up to about 100 K� and
the density of the orthoexcitons always saturates below the
critical density for BEC.7 Hence, BEC of the orthoexcitons
has not been realized by the one-photon excitation.

Recently, several studies on resonant two-photon excita-
tion of 1s excitons at low temperatures have been
reported.12–17 The interest was driven by the possibility that a
cooler high-density exciton gas can be produced by resonant
excitation. Direct electron-hole recombination emission and

phonon-assisted electric dipole radiative transitions involv-
ing �12

− longitudinal optical phonons were observed. A
strongly enhanced direct electron-hole recombination emis-
sion has been interpreted as resonant second-harmonic
generation.12 Further high-resolution two-photon spectro-
scopic studies of orthoexcitons near 2 K �Ref. 16� revealed a
suppression of orthoexciton emission when the two-photon
energy was within a narrow range centered on the resonance,
which was interpreted as a quadrupole polariton effect.

Second harmonic generation and hyper-Raman scattering
of the �12

− phonon have been observed when the two-photon
energy is resonant with the 1s orthoexciton.12,15 The intensi-
ties of the second-harmonic and hyper-Raman-scattering sig-
nals do not depend sensitively on the quality of samples.
Conversely, the luminescence intensity depends very sensi-
tively on the sample quality12 and strong orthoexciton lumi-
nescence was observed using a high-purity crystal.13 It has
been suggested that nearly zero-momentum orthoexcitons
can be directly generated by two-photon absorption and the
Bose-Einstein statistical properties of the orthoexciton sys-
tem have been discussed.

In yet another study 1s orthoexciton luminescence spectra
in Cu2O resulting from two-photon resonant pumping to the
1s and 2s levels were studied over a wide temperature range
�from 1.8 to 70 K�.17 The direct electron-hole recombination
emission and phonon-assisted, electric dipole radiative tran-
sition were observed at all temperatures. The intensities of
the peaks from these two states are found to have very dif-
ferent temperature dependences that also depend on whether
the 1s or 2s level was resonantly excited. At low tempera-
ture, the intensity of the direct electron-hole recombination
line was greatly enhanced when the 1s level was resonantly
excited. As in the earlier studies, the emission was observed
to strongly peak in the direction of the pump beam. Here it
was proposed that the effect results from quadrupole
orthoexciton-polariton waves, generated continuously along
the beam path by two-photon absorption from the incoming

PHYSICAL REVIEW B 80, 245213 �2009�

1098-0121/2009/80�24�/245213�13� ©2009 The American Physical Society245213-1

http://dx.doi.org/10.1103/PhysRevB.80.245213


pump beam, which convert into light at the exiting surface.
This process would appear to be somewhat different from the
resonant quadrupole second-harmonic generation that was
proposed12 to explain the resonant enhancement of direct
electron-hole recombination emission. However it is related
to one-photon experiments in which coherent quadrupole-
exciton polaritons, on both branches, are resonantly gener-
ated at the entering surface and their subsequent interference
is observed as an oscillatory time-dependent decay �so-called
quantum beats�.18 It was also observed that under two-
photon pumping the exiting beam had a divergence that was
several times larger than that of the pump beam; the latter
effect has been recently examined in much greater detail and
the beam spreading was interpreted as arising from scattering
of the exciton component of the polariton wave.19 Further
studies showed anomalous Fresnel coefficients for
polaritons20 and, at high pump intensities, suppressed mol-
ecule formation for polaritons.21

An interesting type of experiments on two-photon excita-
tion involves pumping directly into a state k=0.22 To per-
form such experiments, it is necessary to split the incident
beam into two or more pulses and to direct them on the
sample from different directions. Employing an optical delay
line one can control the arrival time of any of the pulses on
the sample. Consider the configuration shown schematically
in Fig. 1.

The pump beams 1 and 3 with wave vectors k1 and
k3�k3=−k1�, respectively, generate in the system a macro-
scopic coherent state of excitons with wave vector k=k1
+k3=0 that we call a condensate. This is not an equilibrium
state. If we now act on the system by the probe beam 2 with
wave vector k2��k2�= �k1��, this results in a stimulated radia-
tion of condensate excitons and a phase-conjugated beam 4
with wave vector k4=−k2 arises. We will show that the re-
sulting beam 4 can be used to monitor the condensate decay
after its generation. Note that a thermal distribution of
orthoexcitons does not lead to the formation of macroscopic
coherent back scattering. Similar methods, generally termed
four-wave mixing, have proved to be powerful tools to inves-
tigate, in a direct manner, coherent excitations in various
systems, along with the scattering processes which destroy
this coherence.23,24

This paper is organized as follows. In Sec. II we discuss
in detail the basic physical assumptions used in our investi-
gation and formulate a theoretical model based on a simple
Hamiltonian to describe the process of two-photon transi-
tions from the ground state of the crystal to the orthoexciton
state. Using these assumptions, we obtain from the Hamil-
tonian the basic equations for macroscopic amplitudes of co-
herent excitons and photons. In Sec. III we propose a specific
experimental configuration for which the equations for the

amplitudes have the simplest form. In Sec. IV we solve this
set of equations using an external field approximation where
we ignore a backward influence of generated excitons on the
incident pulses. For the subsequent numerical results, we es-
timate in Sec. V the interaction constant that is contained in
our model Hamiltonian. In Sec. VI we compare the results of
numerical solutions of the equations describing time evolu-
tion of the system with the analytical results obtained in the
external field approximation and discuss them. In Sec. VII
we present our conclusions.

II. BASIC ASSUMPTIONS AND THE THEORETICAL
MODEL

We now discuss the principal assumptions that allow a
substantial theoretical simplification of the phenomena to be
examined. �i� We will treat the excitons generated by the
pump beams as a gas of ideal bosons. According to Ref. 1,
this description is sufficient if the following inequalities are
fulfilled:

nexaex
3 � 1/8�, nexU � �2/2mexaex

2 , �1�

where nex is the exciton density, aex and mex are their radius
and effective mass, respectively, and U=4�aex�

2 /mex is the
exciton-exciton interaction constant. Since the exciton radius
is small �aex=7 Å� and the two-photon transition probability
from the ground state into an exciton state is low, inequalities
�Eq. �1�� are well satisfied, even for relatively high-flux den-
sities S ��1 GW /cm2� when nex�1017 cm−3.

�ii� For S�100 MW /cm2, we have Unex�g�nex; i.e.,
two-photon generation of orthoexcitons, governed by the ef-
fective interaction constant g, is large compared with
exciton-exciton scattering. Therefore, we shall not take the
exciton-exciton interactions into account.

�iii� We shall use a purely classical description, where the
time-dependent state of the system is described only by the
macroscopic coherent amplitudes of the interacting excitons
and photons. If the interaction between the excitons and the
photons was linear, their initial coherence would be retained
at all subsequent times.25 In this case, a total factorization of
all the correlation functions describing the state of the quan-
tum system would occur at any time. As a result, to describe
its dynamics, it will be sufficient to only investigate the tem-
poral evolution of the coherent amplitudes. The process of
two-photon generation of excitons examined here is caused
by a nonlinear interaction. Strictly speaking, it can lead to
the loss of the initial coherence of the excitons and photons
owing to the generation of quantum fluctuations which react
back on the system. In such a case it is not sufficient to use
only coherent amplitudes to describe the system. However,
as was shown in Ref. 26, the influence of the quantum fluc-
tuations on the initial coherent state only becomes important
over times when they can “accumulate;” we will assume that
noncoherent photons generated in the system leave the crys-
tal before this occurs. The “decay of coherence” of the exci-
tons is taken into account by introducing a phenomenologi-
cal decay constant.

�iv� Our aim here is to investigate the propagation of two
counter-propagating pump pulses and a delayed probe pulse.

FIG. 1. Scheme of four-wave mixing.
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This process is accompanied by the generation of a phase-
conjugated signal. Strictly speaking, to treat this problem one
needs to consider solutions of the dynamical equations which
are nonuniform, not only in time but also in space, and which
satisfy specific conditions at the crystal boundaries. However
we will restrict ourselves to the simpler problem involving
only the time evolution of the system. It should be a good
approximation to regard the total electromagnetic field in the
crystal as a superposition of two spatially uniform fields. The
first of them, which we will assume has a specific envelope
in time, is generated by external sources. The second field
arises from a polarization of the medium resulting from ex-
citon creation in the crystal by the first field. The equation for
photon amplitudes involves a current density j��k , t� arising
from the excitons as well as a damping �ph that accounts the
photon escape from the crystal. Our description not only al-
lows for the generation of the phase-conjugated beam but
also takes into account the influence that the excitons and
photons so generated have on the three primary electromag-
netic fields with wave vectors k1, k3, and k2. Strictly speak-
ing, the approach is valid only for laser pulses in which the
spatial extent exceeds the crystal dimensions. The phenom-
enological constant �ex in equation for excitons amplitude
takes into account the exciton dephasing.

We now introduce a model Hamiltonian that will be used
to describe the dynamics of the system. The spin-orbit cou-
pling splits the 1s yellow excitons in Cu2O into a threefold
degenerate 3�25

+ �orthoexciton� state, with wave functions
transforming as xy, yz, zx, and a single 1�2

+ �paraexciton�
state.27 According to the selection rules, the two-photon tran-
sitions from the ground state into orthoexciton states are al-
lowed but are forbidden for the paraexciton state. The fol-
lowing Hamiltonian describes two-photon excitation process
into the three orthoexciton states �xy, yz, and zx� and incor-
porates assumptions �i� and �ii� �Ref. 22�:

H = Hex + Hph + Hint, �2�

Hex = �
k

��ex�k� �
	=xy,yz,zx

â	
†�k�â	�k� ,

Hph = �
k

��ph�k� �
�=1,2

ĉ�
†�k�ĉ��k� , �3�

Hint =
1

2 ! �V
�

k1,k2

�
	=xy,yz,zx

�
�1,�2=1,2

g	
��1,�2��k1,k2�


�â	
†�k1 + k2�ĉ�1

�k1�ĉ�2
�k2� + H.c.� , �4�

here ��ex�k�=��ex�0�+�2k2 /2mex and ��ph�k�=�c�k� /��b
are the energies of the excitons and photons in the states with
wave vector k, respectively, �b is background permittivity of
the medium, and c is the speed of light in vacuum. The
creation â	

†�k�, ĉ�
†�k� and destruction â	�k�, ĉ��k� operators

of 	-excitons �	=xy ,yz ,zx� and photons with polarization
��=1,2� obey the Bose commutation relationships.

The interaction constants g	
��1,�2��k1 ,k2� are proportional

to matrix elements of the two-photon transitions calculated
in second-order perturbation theory. Using the selection rules
for these transitions,27 we can write these constants in the
form

gxy
��1,�2��k1,k2� = ex

��1��k1�ey
��2��k2� + ey

��1��k1�ex
��2��k2� ,

gyz
��1,�2��k1,k2� = ey

��1��k1�ez
��2��k2� + ez

��1��k1�ey
��2��k2� ,

gzx
��1,�2��k1,k2� = ez

��1��k1�ex
��2��k2� + ex

��1��k1�ez
��2��k2� ,

�5�

where e�1��k� and e�2��k� are the two linearly independent
polarization vectors of the electromagnetic field with wave
vector k; they satisfy the condition e�1��k�
e�1��k�=k / �k�.

In Hamiltonian �4� the linear polariton effect is not taken
into account since, for the process under investigation, the
two polaritons that belong to the photonlike component of
the lower polariton branch lead to the excitation of polaritons
at the bottom of the upper polariton branch, which is the
excitonlike one in the given spectral range �ph�k�
	�ex�0� /2.

Using assumptions �iii� and �iv�, we obtain from Eq. �4�
the following equations for the macroscopic exciton and
photon amplitudes a	�k , t�= 
â	�k��t and c��k , t�= 
ĉ��k��t:

�i�
d

dt
− ��ex�k� + i�exa	�k,t� =

1

2 ! �V
�
k�

�
�1,�2=1,2

g	
��1,�2�


�k�,k − k��c�1
�k�,t�c�2

�k − k�,t� , �6�

�i�
d

dt
− ��ph�k� + i�phc��k,t� =

1
�V

�
k�

�
	=xy,yz,zx

�
��=1,2

g	
��,���


�k,k��a	�k + k�,t�c��
� �k�,t� + j��k,t� . �7�

The photon amplitudes can be expressed as the sum of
two terms

c��k,t� = c�
p�k,t� + c̄��k,t� . �8�

The former, c�
p�k , t�, satisfies the equation

�i�
d

dt
− ��ph�k� + i�phc�

p�k,t� = j��k,t� �9�

and can be written as

c�
p�k,t� = �V��,1���k,k1

eik1 + �k,k3
eik3�C�t�

+ �k,k2
eik2C�t − td��e−i�0t, �10�

here V is the electromagnetic field quantization volume �V
→��; k1, k3, and k2 are, respectively, the wave vectors of
the two pump pulses and the probe pulse; k1

, k3
, and k2

are their initial phases; td�0 is the delay time between the
pump pulses and the probe pulse; and �0=�ph�k1� and C�t�
are the carrier frequency and the envelope of each of the
three pulses. We will assume C�t� to be a specified function
of time.
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The amplitude c̄��k , t� of the secondary electromagnetic
field due to the polarization of the medium obeys the equa-
tion

�i�
d

dt
− ��ph�k� + i�phc̄��k,t� =

1
�V

�
k�

�
	=xy,yz,zx

�
��=1,2

g	
��,���


�k,k��a	�k + k�,t�c��
� �k�,t� . �11�

It follows from Eq. �11� that c̄��k , t��0 only when excitons
are present in the system.

III. SPECIFIC CONFIGURATION OF THE EXPERIMENT

We now consider a configuration in which the equations
for the amplitudes c̄��k , t� and a	�k , t� have the simplest
form. We choose the polarizations vectors of the counter-
propagating pump waves to be orthogonal to each other and
assume that the polarization vector of the probe wave coin-
cides with the polarization vector of one of the pump waves,

k3 = − k1 =
��b�0

c
ŷ, k2 =

��b�0

c
�x̂ sin � + ŷ cos �� ,

�12�

e�1��k1� = ẑ, e�2��k1� = − x̂ , �13�

e�1��k2� = ẑ, e�2��k2� = x̂ cos � − ŷ sin � , �14�

e�1��k3� = x̂, e�2��k3� = − ẑ , �15�

where x̂, ŷ, and ẑ are the unit vectors defining the Cartesian
coordinate system.

Let us investigate which excitons and secondary photons
are generated in the system under the action of the external
field represented by Eq. �10�. Here we consider only the case
of very small values of the angle �, so cos �	1. If we
substitute the amplitudes �Eq. �10�� into the right-hand side

of Eq. �6�, instead of the amplitudes c��k , t�, we see that the
external field creates only excitons with amplitudes azx�0 , t�
and a	�k2+k3 , t�.

We next substitute Eq. �10� into the right-hand side of Eq.
�11� taking into account that only the exciton amplitudes
azx�0 , t� and a	�k2+k3 , t� differ from zero. We can then see
that �i� the waves with the wave vectors k1, k3, and k2 are, in
turn, influenced by the excitons that they generate
�c��ki , t� , i=1,2 ,3� and �ii� additional electromagnetic waves
with the amplitudes c1�−k2 , t� and c1�k2+2k3 , t� are excited.

For the wave with amplitude c1�k2+2k3 , t� the dimen-
sionless resonance detuning

�ph�k� =
�ph�k�

�0
− 1 �16�

is given as �ph�k2+2k3�=�5+4 cos �−1. Therefore for ob-
lique � the excitation of these waves is not resonant and can
be neglected.

Using Eq. �6� it follows that the presence of an additional
electromagnetic wave with amplitude c1�k4 , t��k4=
−k2 , e�1��k4�= x̂ cos �− ŷ sin � , e�2��k4�= ẑ� leads to the
creation of excitons with amplitudes azx�0 , t�, azx�k2+k3 , t�,
azx�k1+k4 , t� and axy�2k4 , t�, axy�k3+k4 , t�, ayz�k1+k4 , t�,
ayz�0 , t�. The right-hand side of the equations for the ampli-
tudes axy�2k4 , t�, axy�k3+k4 , t�, ayz�k1+k4 , t�, and ayz�0 , t� is
proportional to sin �. Hence, for rather small values of the
angle � we can neglect the influence of these excitons on the
system dynamics.

From Eq. �11� we find that the presence of excitons and
photons with amplitudes azx�0 , t�, azx�k2+k3 , t�, azx�k1
+k4 , t� and c1�k1 , t�, c1�k2 , t�, c1�k3 , t�, c1�k4 , t� in turn leads
to the generation of photons with amplitudes c1�k3+2k2 , t�,
c1�k1+2k4 , t�, c1�k4+2k1 , t�, and c1�k2+2k3 , t�. But their
generation is again not resonant and can be neglected.

From the above it follows that the dynamics of the system
is described by the amplitudes azx�0 , t�, azx�k2+k3 , t�,
azx�k1+k4 , t� and c1�k1 , t�, c1�k2 , t�, c1�k3 , t�, c1�k4 , t�. The
relevant equations have the form

�i�
d

dt
− ��ex�0� + i�exazx�0,t� =

g
�V

�c1�k1,t�c1�k3,t� + c1�k2,t�c̄1�k4,t�� ,

�i�
d

dt
− ��ex�k1 + k4� + i�exazx�k1 + k4,t� =

g
�V

c1�k1,t�c̄1�k4,t� ,

�i�
d

dt
− ��ex�k2 + k3� + i�exazx�k2 + k3,t� =

g
�V

c1�k2,t�c1�k3,t� ,

�i�
d

dt
− ��ph�k1� + i�phc̄1�k1,t� =

g
�V

�azx�0,t�c1
��k3,t� + azx�k1 + k4,t�c̄1

��k4,t�� ,

�i�
d

dt
− ��ph�k2� + i�phc̄1�k2,t� =

g
�V

�azx�0,t�c̄1
��k4,t� + azx�k2 + k3,t�c1

��k3,t�� ,
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�i�
d

dt
− ��ph�k3� + i�phc̄1�k3,t� =

g
�V

�azx�0,t�c1
��k1,t� + azx�k2 + k3,t�c1

��k2,t�� ,

�i�
d

dt
− ��ph�k4� + i�phc̄1�k4,t� =

g
�V

�azx�0,t�c1
��k2,t� + azx�k1 + k4,t�c1

��k1,t�� , �17�

where

c1�ki,t� = �VC�t�e−i�0t+iki + c̄1�ki,t�, �i = 1,3� ,

c1�k2,t� = �VC�t − td�e−i�0t+ik2 + c̄1�k2,t� ,

c1�k4,t� = c̄1�k4,t� . �18�

Converting to new dynamical variables ã�k , t� and c̃�k , t� via the transformations

azx�0,t� = �V
C2�t0�
�C�t0��

e−2i�0t+i�k1
+k3

�ã�0,t� ,

azx�k1 + k4,t� = �V
C2�t0�
�C�t0��

e−2i�0t+i�2k1
+k3

−k2
�ã�k1 + k4,t� ,

azx�k2 + k3,t� = �V
C2�t0�
�C�t0��

e−2i�0t+i�k2
+k3

�ã�k2 + k3,t� ,

c1�ki,t� = �VC�t0�e−i�0t+ikic̃�ki,t�, �i = 1,2,3� ,

c̄1�k4,t� = �VC�t0�e−i�0t+i�k1
+k3

−k2
�c̃�k4,t� �19�

and introducing the dimensionless parameters

t̄ = �0t, �ex =
�ex

��0
, �ph =

�ph

��0
, �ex�k� =

�ex�k�
�0

− 2, � =
g��C�t0��2

��0
� 1, �20�

we can rewrite the set of Eq. �17� in the form

�i
d

dt̄
− �ex�0� + i�exã�0, t̄� = ���f�t̄� + c̃�k1, t̄���f�t̄� + c̃�k3, t̄�� + �f�t̄ − t̄d� + c̃�k2, t̄��c̃�k4, t̄�� ,

�i
d

dt̄
− �ex�0� + i�exã�k1 + k4, t̄� = ��f�t̄� + c̃�k1, t̄��c̃�k4, t̄� ,

�i
d

dt̄
− �ex�0� + i�exã�k2 + k3, t̄� = ��f�t̄ − t̄d� + c̃�k2, t̄���f�t̄� + c̃�k3, t̄�� ,

�i
d

dt̄
+ i�ph�c̃�k1, t̄� = ��ã�0, t̄��f�t̄� + c̃�k3, t̄��� + ã�k1 + k4, t̄�c̃��k4, t̄�� ,

�i
d

dt̄
+ i�ph�c̃�k2, t̄� = ��ã�0, t̄�c̃��k4, t̄� + ã�k2 + k3, t̄�c̃��k3, t̄�� ,

�i
d

dt̄
+ i�ph�c̃�k3, t̄� = ��ã�0, t̄��f�t̄� + c̃�k1, t̄��� + ã�k2 + k3, t̄��f�t̄ − t̄d� + c̃�k2, t̄���� ,
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�i
d

dt̄
+ i�ph�c̃�k4, t̄� = ��ã�0, t̄��f�t̄ − t̄d� + c̃�k2, t̄��� + ã�k1 + k4, t̄��f�t̄� + c̃�k1, t̄���� . �21�

Here f�t�=C�t� /C�t0� and the time t0 will be defined later. In
deriving the set of Eq. �21� we have used the fact that the
dimensionless resonance detunings �ex�k1+k4� and �ex�k2
+k3� can be written in the form

�ex�k1 + k4� = �ex�k2 + k3� = � + �b
��0

mexc
2sin2�

2
,

� =
�ex�0�

�0
− 2. �22�

For Cu2O the parameter �b��0 /mexc
2��, so in what follows

we will assume �ex�k1+k4�=�ex�k2+k3�	��1.

IV. EXTERNAL FIELD APPROXIMATION

The complete set of nonlinear Eq. �21�, taking into ac-
count the reaction of the excitons on the electromagnetic
waves that generate them, can be only solved using numeri-
cal methods. Hence it is desirable to obtain simpler equa-
tions, which can be solved analytically but do not supply as
detailed a description of the temporal evolution of the sys-
tem. This allowed a deeper insight into the physics of the
processes which occur in the system.

Now when the inequality

���ã�0, t̄��2 � �ph �23�

is fulfilled, the photons generated leave the system before
they can influence the excitons, and the second summation in
Eq. �21� and expressions of the type �f�t̄�+ c̃�ki , t̄��, i
=1,2 ,3 can be neglected. Our system of equations then takes
the form

�i
d

dt̄
− � + i�ex�ã�0, t̄� = ��f2�t̄� + f�t̄ − t̄d�c̃�k4, t̄�� , �24�

�i
d

dt̄
− �ex + i�ex�ã�k1 + k4, t̄� = �f�t̄�c̃�k4, t̄� , �25�

�i
d

dt̄
+ i�ph�c̃�k4, t̄� = ��ã�0, t̄�f��t̄ − t̄d�

+ ã�k1 + k4, t̄�c̃��k1, t̄�� , �26�

where only the three important equations are shown.
With the same degree of accuracy, the right-hand side in

Eq. �25� and the second term in the square brackets on the
right-hand side of Eq. �24�, associated with the influence of
the newly generated photons on the excitons, can be ne-
glected. As a result, we obtain a simple system of linear
equations

��i
d

dt̄
− � + i�ex�ã�0, t̄� = �f2�t̄� ,

�i
d

dt̄
+ i�ph�c̃�k4, t̄� = �ã�0, t̄�f��t̄ − t̄d� ,� �27�

which have a clear physical meaning: the first equation de-
scribes the generation of excitons by the two pump pulses 1
and 3 while the second equation describes the generation of
the resultant signal 4 by the probe pulse 2 and the newly
generated excitons. In this approximation all three incident
pulses are treated as specified external fields. The validity of
the approximations assuming that inequality Eq. �23� is ful-
filled will be further confirmed by the numerical calculations.

Let us solve Eq. �27� for bell-shaped pulses with a maxi-
mum at t̄= t̄0. We assume that the pulse duration t̄p satisfies
the following inequalities:

�ph
−1 � t̄p � �ex

−1 �28�

and the time t̄0 is chosen so that t̄p� t̄0. The first of inequali-
ties in Eq. �28� is a necessary condition for the temporal
description of the system that we use here. This implies that
the duration of the pulse tp, which propagates through the
crystal with velocity c /��b is much greater than the time of
flight of the photons through the crystal ��bL /c. In this case,
the pulse spatial extension ctp /��b significantly exceeds the
sample thickness L. The fulfillment of the second inequality
in Eq. �28� is necessary because it gives the possibility to
probe the exciton condensate as a function of time and in this
way monitor its temporal evolution.

Taking into account the first of the inequalities in Eq. �28�
and the resonance condition

�tp � 1, �29�

we have from the first equation in Eq. �27�

ã�0, t̄� = − i� exp�− ��ex + i��t̄��
0

t̄

dt̄1 exp���ex + i��t̄1�f2�t̄1�

	 − i���t̄�exp�− ��ex + i���t̄ − t̄0�� , �30�

where

��t̄� = �
0

t̄

dt̄1f2�t̄1� . �31�

The function ��0�=0 and increases monotonically with the
increasing of t̄. There is an inflection point at t̄= t̄0 and on
passing through it the function increases more slowly, chang-
ing little for t̄� t̄p. Thus, the average density of excitons with
the wave vector k=0,
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nex�0, t̄� =
�azx�0, t̄��2

V
= �2�C�t0��2�2�t̄�exp�− 2�ex�t̄ − t̄0��

�32�

sharply increases in the time interval from t̄ to t̄� t̄p and then
decreases exponentially.

Using Eq. �30�, we can rewrite equation Eq. �23� in the
form �2��+����ph. Taking into account that ��+��� t̄p, we
find

�2t̄p � �ph. �33�

We now use the second equation in Eq. �27�. Taking into
account the second inequality in Eq. �28�, we sequentially
find

c̃�k4, t̄� 	 − i��
0

t̄

d� exp�− �ph��ã�0, t̄ − ��f�t̄ − t̄d − �� .

�34�

The truncating multiplier exp�−�ph�� in Eq. �34� restricts the
integration over the variable � to the range from 0 to the
value ��ph

−1. The typical scale for the variation in the func-
tion f�t̄� is t̄p while that for the function ã�0 , t̄� is ��ex

−1 �for
t̄� t̄p�. Then, when the inequalities in Eq. �28� are fulfilled,
we can neglect the variation in these functions over the
specified integration interval and obtain

c̃�k4, t̄� 	 − i�ã�0, t̄�f�t̄ − t̄d��
0

t̄

d� exp�− �ph��

	 − i�ã�0, t̄�f�t̄ − t̄d�
1 − exp�− �pht̄�

�ph

	 − i�ã�0, t̄0 + t̄d�f�t̄ − t̄d��ph
−1. �35�

For the average density of the radiated photons we obtain

nph�k4, t̄� =
�2

�ph
2 nex�0, t̄0 + t̄d�f2�t̄ − t̄d� . �36�

Equation �36� was derived in such a way that it is also valid
for a case where the decay of the exciton condensate is non-
exponential in character. In this case it is sufficient that the
excitonic amplitude not experience significant changes dur-
ing a time interval ��ph

−1,

d

dt̄
ã�0, t̄� � �phã�0, t̄� .

It is seen from Eq. �36� that the density of radiated pho-
tons nph�k4 , t̄� exhibits the same dependence on the time t̄, as
the density of photons in the probe pulse. The maximal value
of nph�k4 , t̄� is reached for t̄= t̄0+ t̄d and is given by

nph�k4, t̄0 + t̄d� =
�4

�ph
2 �C�t0��2�2�t̄0 + t̄d�exp�− 2�ext̄d� .

�37�

It follows from Eq. �37� that for t̄d� t̄p, the probe and pump
pulses are separated in time, and the dependence of the maxi-

mal value of nph�k4 , t̄� on the delay time t̄d has the same
shape as the t̄ dependence of the density of excitons, nex�0 , t̄�.
Therefore, by investigating the dependence of the resultant
four-wave-mixing signal on t̄d, one can obtain information
about the temporal evolution of the exciton condensate.
However, this signal is weak since the interaction constant
for the two-photon generation of excitons from the crystal
ground state is small; so it may be difficult to observe it
experimentally. One can also study the time-integrated sig-
nal, whose value can be increased as a result of multiple
repetitions of the experiment over time intervals ��ex

−1.
The density of photons radiated during the time of the

experiment is

N�td� = �
0

+�

dtnph�k4,t� =
�2

�ph
2 nex�0, t̄0 + t̄d��

0

+�

dtf2�t̄ − t̄d�

=
�2��+ ��

�ph
2 nex�0, t̄0 + t̄d� . �38�

Substituting Eq. �32� into Eq. �38�, we obtain

N�td� =
�4�C�t0��2��+ ���2�t̄0 + t̄d�

�ph
2 exp�− 2�ext̄d� . �39�

For t̄d� t̄p,

N�td� =
�4�C�t0��2�3�+ ��

�ph
2 exp�− 2�ext̄d� . �40�

We see that one can also obtain information about the tem-
poral evolution of the exciton condensate via the study of the
dependence of time-integrated four-wave-mixing signal on
the delay time t̄d between the probe and the pump pulses.

Returning to our initial notation, we can see that the time-
integrated signal �Eq. �40�� is proportional to the areas

�
0

+�

dt�C�t��2

of all three incoming pulses.
Applying the above formulas for the case of Gaussian

pulses

f�t̄� = exp�− 2
�t̄ − t̄0�2

t̄p
2  , �41�

we obtain

��t̄� =
��t̄p

4 �erf�2
t̄0

t̄p
� + erf�2

�t̄ − t̄0�

t̄p
�

	
��t̄p

4 �1 + erf�2
�t̄ − t̄0�

t̄p
� . �42�

Hence,
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nex�0, t̄� = �� �t̄p

4
�2

�C�t0��2�1 + erf�2
�t̄ − t̄0�

t̄p
�2


exp�− 2�ex�t̄ − t̄0�� , �43�

nph�k4, t̄� = �� �2t̄p

4�ph
�2

�C�t0��2exp�− 2
�t̄ − t̄0 − t̄d�2

t̄p
2 


�1 + erf�2
t̄d

t̄p
�2

exp�− 2�ext̄d� , �44�

N�td� =
��3�4t̄p

3

43�ph
2 �C�t0��2�1 + erf�2

t̄d

t̄p
�2


exp�− 2�ext̄d� . �45�

When inequality in Eq. �29� is fulfilled, the results obtained
do not depend on the value of the resonance detuning, �.

Note, that when the integral in Eq. �34� is calculated ex-
actly, we obtain the following expression for the density of
the radiated photons:

nph�k4, t̄� = 2�2� �t̄p

4
�4

�C�t0��2�1 + erf�2
t̄d

t̄p
�2

exp�− 2�ext̄d�


�1 + erf��2� t̄ − t̄0 − t̄d −
�pht̄p

2

4
�

t̄p
��

2

exp�− �ph��t̄ − t̄0 − t̄d� −
�pht̄p

2

4 � . �46�

The same results can be obtained also for the case of
square pump and probe pulses for which the set of Eq. �27�
can be solved exactly �see Appendix�. These results obtained
within the framework of the above restrictions have a clear
physical interpretation. The counter-propagating pump
pulses, denoted 1 and 3 in Fig. 1, create an excitonic con-
densate in the system. After their action has terminated, the
condensate evolution is determined by the internal interac-
tions in the system, which we have modeled as an exponen-
tial decay. If after some time td following the condensate
formation, the system is subjected to the action of a probe

pulse, 2, stimulated radiation, 4, traveling opposite to 2 is
generated, the over all behavior being interpreted as a par-
ticular kind of four-wave-mixing process. The duration of the
resulting signal is determined by the duration of the probe
pulse tp but most importantly its intensity is proportional to
the density of the excitonic condensate. Since this density
diminishes as exp�−2�ext̄�, it is clear that the later the appli-
cation of the probe pulse on the excitonic condensate, the
smaller the resulting signal 4. Thus, the duration of the re-
sulting signal does not depend on the delay time td but its
intensity will decrease exponentially with increasing td;
i.e., the resulting time-integrated signal 4 should decay as
exp�−2�ext̄d�.

V. ESTIMATION OF INTERACTION CONSTANT

The four-wave-mixing phenomenon examined above re-
sults from the creation of excitons from the crystal ground
state as a result of absorption of two cross-polarized photons
of the same frequency �0	�Eg− I1� /2�, which propagate
opposite directions; here Eg is the forbidden gap and I1 is the
ionization energy of the exciton ground state. Using Hamil-
tonian �2�–�4� one obtains the following expression for the
transition probability per unit time:

W =
2�

�

g2n̄2

V
��Eg − I1 − 2��0� , �47�

where n̄ is an average number of photons in the initial state.
On the other hand, the probability of the same process, cal-
culated in Ref. 28 on the basis of an exciton as a coupled
electron-hole pair has the form,

FIG. 2. The solid curve describes the temporal evolution of the
relative density of the exciton condensate �ã�0 , t̄��2

=nex�0 , t̄� / �C�t̄0��2 for S=1 MW /cm2 and td=10tp. The dotted
curve describes the dependence 0.0019 exp�−2�ext̄�. Inset: the solid
curve describes the temporal dependence of the relative density of
generated photons �c̃�k4 , t̄��2=nph�k4 , t̄� / �C�t̄0��2. The dotted curve
shows the dependence 2.66
10−7f2�t̄− t̄d�.
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W =
2�

�
�64�2e2Eg

3aex�v0
�2 2f2pn̄2

N�b
2�0

2m0�Eg − I2���0

� dxx4

�x2 + 1�� �2x2

2�aex
2 + Eg − ��0�

+ 2��
n=2

� �n2 − 1

n5 �� n

n + 1
�4�n − 1

n + 1
�n−2� 1

Eg − In − ��0
��

2

��Eg − I1 − 2��0� . �48�

Here In is the ionization energy of the nth exciton state, m0 is
the mass of the free electron, e is its charge, aex is the effec-
tive Bohr exciton radius, � is its reduced mass, N is the total
number of elementary cells in the crystal, v0 is their volume,
f2p is the oscillator strength of the one-photon transition into
the 2p state of the exciton. The integral and the sum in the
square brackets in Eq. �48� take into account, respectively,
both the band and exciton intermediate states associated with
the same pair of bands involved in the formation of the final
exciton state. The estimations performed in Ref. 28 show
that for case of the Cu2O crystal, the effect of the exciton
intermediate Rydberg states on the transition amplitude is
considerably less than that of the band intermediate states.
Therefore, the sum in the square brackets in formula �48� can
be omitted. Comparing Eqs. �47� and �48� and making a
simple transformation we obtain the following expression for
the interaction constant:

g 	
16

3
�f2p��p

�8�aex
3 1 + 2�y

�y�1 + �y�2
,

y =
Eg

2I1
, I1 =

�e4

2�2�b
2 , aex =

�2�b

�e2 , �p
2 =

4�e2

m0v0�b
.

�49�

Assuming Eg=2.17 eV, I1=150 meV, �=0.56m0, aex
=7 Å, �b=6.5, v0=0.77
10−22 cm2, f2p=2
10−6, where
m0 is the mass of the free electron, we find: g	3

10−25 erg cm3/2.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the results of the numerical
investigation of the temporal evolution of the exciton con-
densate and the generated photon densities, as well as the
dependence of the time-integrated phase-conjugated signal
on the delay time between the probe and the pump pulses.
We will compare these results with those obtained on the
basis of the simplified set of Eq. �27� as well as those of the
approximate solutions in Eqs. �43�–�46� of this set.

The following values of parameters were used for the nu-
merical calculations: �0=1.545
1015 s−1, �ex=1 �eV, L
=4
10−2 cm, and tp=15 ps.

Let us first consider a case of small excitation levels,
when the flux in the probe and pump pulses is S
=1 MW /cm2. Figure 2 shows the time dependence of the

density of the exciton condensate obtained as a result of the
numerical solution to the full set of Eq. �21�. Note that it
accurately coincides with the dependence predicted by Eq.
�43�. Also note that Eq. �43� was obtained as a result of the
approximate solution to the set of Eq. �27�, where all three
incident pulses were treated as given external fields. Accord-
ing to Fig. 2, the decay of the exciton condensate for t� tp
exhibits an exponential behavior with the decay constant �ex.

The inset in Fig. 2 depicts the temporal dependence of the
density of generated photons. The results obtained using the
numerical integration of the full set of Eq. �21� and of the set
of Eq. �27� that corresponds to the external field approxima-
tion coincide and are well described by Eq. �46�. The result-
ing phase-conjugated signal exhibits the same form as a
probe pulse; however, it is shifted to the right-hand side by
an amount ��ex

−1 �i.e., there is a small delay by a time of
order the photon transit time through the crystal�. This delay
is absent in the approximate formula �44�, which also leads
to an overestimate of the photon density by a factor 1.3 com-
pared with Eq. �46�.

Figure 3 shows the dependence of the resulting time-
integrated signal as a function of the delay time t̄d. The nu-
merical solutions to the set of Eq. �27�, which correspond to
the external field approximation, again coincide with the re-

FIG. 3. The solid curve describes the Ñ�t̄d� dependence �Ñ�t̄d�
=�ex�0N�t̄d� / �C�t̄0��2� for S=1 MW /cm2 while dotted curve shows
the form 7.9
10−10 exp�−2�ext̄d�. The solid curve in the inset de-

scribes the dependence Ñ�t̄d� for S=100 MW /cm2 while the dotted
curve shows the form 6.9
10−6 exp�−2�ext̄d�.
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sults obtained from solving the complete set of Eq. �21�. The
approximate form �45� for the time-integrated signal when
td� tp is only lager by a factor 1.16. The dependence of N�td�
for td� tp exhibits an exponential behavior with the decay
constant �ex. Clearly, the external field approximation is
quite satisfactory for the chosen intensities of the probe and
pump pulses. A minor difference of the approximate formu-
las �44� and �46� from the results obtained via numerical
solution of the full set of Eq. �21� is related to the fact that
the spatial extent of the pulse is only three times the crystal
thickness; therefore, the first of the strict inequalities in Eq.
�28� used to obtain Eq. �44� is not well satisfied. When the
crystal thickness is an order of magnitude less than the spa-
tial pulse width, Eqs. �43�–�45� should describe the temporal
evolution of the system with great accuracy.

The aforementioned results do not qualitatively change if
we increase the flux density of the incident pulses to S
=10 MW /cm2. For densities of S=100 MW /cm2 and
greater, Eq. �43� obtained in the external field approximation,
rather well describes the temporal evolution of the density of
the exciton condensate, which is generated only due to the
pump pulses. However, formula �43� does not take into ac-
count the influence of the probe pulse on the exciton conden-
sate.

According to Fig. 4, the condensate decay for t� tp ini-
tially occurs in an exponential fashion with the decay con-
stant �ex. However, as a result of the probe pulse, a dramatic
fall of the condensate density occurs during the time interval
when the phase-conjugated signal is generated. When the
action of the probe pulse is terminated, the subsequent expo-
nential decay continues with the same decay constant, �ex.
The greater the density of the photon flux in the probe pulse,
the greater the drop in the exciton density that occurs during
the time of its action. In other words, the resulting signal can
be treated as being stimulated by the probe pulse from the
excitons generated by the pump pulses.

According to the inset in Fig. 4, the resultant phase-
conjugated signal 4 has approximately the same form as the
probe pulse; however, it is delayed by a time of order ��ex

−1.
The external field approximation in this case leads to signal
which is overestimated by only a factor of 1.145 compared
with that presented in Fig. 4. The numerical results found in
this approximation agree well with the results predicted by
Eq. �46�. At the same time, Eq. �44� does not account the
aforementioned shift of the maximum of the radiation peak;
moreover, it overestimates the photon density by a factor of
1.5.

The inset in Fig. 3 shows that for td� tp the dependence of
the time-integrated phase-conjugated signal on the delay
time td exhibits an exponential fall with the decay constant
�ex. According to Fig. 4, the probe pulse in the proposed
experiment significantly influences the temporal evolution of
excitons. Nevertheless, examination of the dependence N�td�
allows one to gather information related to the temporal evo-
lution of the “free” exciton condensate, which is generated
by the pump pulses when not perturbed by the probe pulse.
Application of the external field approximation leads to a
function N�td�, which overestimates those presented in the
inset of Fig. 3 by only a factor 1.15. Using Eq. �45� overes-
timates by a factor of 1.4.

Application of pulses with very high photon fluxes �e.g.,
S=1 GW /cm2� cannot be treated within the framework of
our theory since the exciton density would then be so large
that exciton-exciton interaction effects would have to be
taken into account, which were not considered in the present
study.

Note that the numerical solution of the full set of Eq. �21�
for ���ã�0 , t̄��2��ph, was given earlier in Ref. 22. For this
case the mutual transformations between excitons and pho-
tons occur much faster than the photons escape from the
crystal. This results in a substantial backward influence of
the excitons on the laser pulses impinging on the crystal. The
dependence of the four-wave-mixing time-integrated signal
on the delay time td can exhibit both an oscillating �for large
values of the two-photon resonance detuning� and chaotic
�for small detuning values� character. However, in Ref. 22
experimentally unrealistic large laser-pulse intensities were
assumed. Therefore, the results obtained there are of an aca-
demic interest only, although they can be useful for studying
other physical situations. For example, when orthoexcitons
are generated in Cu2O by two photons whose frequencies
strongly differ, the matrix element of the two-photon transi-
tion substantially increases,28 and effects such as quantum
beats and chaos could appear for achievable laser intensities.

VII. CONCLUSIONS

We have shown that studying the time-integrated phase-
conjugated signal versus the time delay between the probe
and pump pulses in a four-wave-mixing experiment facili-
tates studying the temporal evolution of a nonequilibrium
exciton condensate over a wide range of the pulse intensities.
The external field approximation yields analytical expres-
sions which qualitatively describe the dynamics of the sys-
tem and provides insight into the underlying physical pro-

FIG. 4. The solid curve describes the temporal evolution of the
relative density of the exciton condensate for S=100 MW /cm2

and td=10tp while the dashed curves show dependences
0.1535 exp�−2�ext̄� and 0.1735 exp�−2�ext̄�. The dotted curve
shows the probe and pump pulses. The solid curve in the inset
describes the temporal evolution of the relative density of the
phase-conjugated photons generated while the dotted line shows the
dependence 2.34
10−3f2�t̄− t̄d�.
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cesses. The relationship for the intensity of the resulting
time-integrated signal derived in this approximation is pro-
portional to the areas of the three pulses incident on the
crystal.

It is important to note that the proposed method can be
used to probe the system when the exciton condensate is not
generated by counter-propagating pump beams but rather
arises from internal interactions of excited quasiparticles
present in the system, i.e., it can be used to study the time
evolution of a condensate generated by alternate means �e.g.,
over then gap pumping�.
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APPENDIX: EXTERNAL FIELD APPROXIMATION FOR
THE CASE OF SQUARE PULSES

We represent here the exact solutions to the system �Eq.
�27�� for the case, when the probe and the pump pulses are of
the square form

f�t̄� = �� t̄, t̄0 −
t̄p

2
, t̄0 +

t̄p

2
� , �A1�

where

��t̄,a,b� = H�t̄ − a�H�b − t̄�

and

H�t̄� = �1 at t̄ � 0

0 at t̄ � 0
�

is the Heaviside step function. We then have

nex�0, t̄� = �C�t0��2�ã�0, t̄��2, �A2�

ã�0, t̄� =
i�

�ex
��� t̄, t̄0 −

t̄p

2
, t̄0 +

t̄p

2
��e−�ex�t̄−�t̄0−t̄p/2�� − 1� − H� t̄ − � t̄0 +

t̄p

2
�2 sinh��ext̄p

2
�e−�ex�t̄−t̄0� , �A3�

nph�k4, t̄� = �C�t0��2�c̃�k4, t̄��2, �A4�

c̃�k4, t̄� = H�t̄p − t̄d��1�t̄, t̄d� + H�t̄d − t̄p��2�t̄, t̄d� , �A5�

�1�t̄, t̄d� = �� t̄, t̄0 + t̄d −
t̄p

2
, t̄0 +

t̄p

2
��1�t̄, t̄d� + �� t̄, t̄0 +

t̄p

2
, t̄0 + t̄d +

t̄p

2
��2�t̄, t̄d� + H� t̄ − t̄0 − t̄d −

t̄p

2
��2�t̄, t̄d� , �A6�

�2�t̄, t̄d� = �� t̄, t̄0 + t̄d −
t̄p

2
, t̄0 + t̄d +

t̄p

2
��1�t̄, t̄d� + H� t̄ − t̄0 − t̄d −

t̄p

2
��1�t̄, t̄d� , �A7�

�1�t̄, t̄d� =
�2

�ex + i�
�a1�t̄d�exp�− �ph� t̄ − t̄0 − t̄d +

t̄p

2
� + a2 exp�− ��ex + i��� t̄ − t̄0 +

t̄p

2
� + a3� , �A8�

�2�t̄, t̄d� =
�2

�ex + i�
�a1�t̄d�exp�− �ph� t̄ − t̄0 − t̄d +

t̄p

2
� + b1 exp�− �ph� t̄ − t̄0 −

t̄p

2
� + b2 exp�− ��ex + i���t̄ − t̄0��� , �A9�

�3�t̄, t̄d� =
�2

�ex + i�
�a1�t̄d�exp�− �ph� t̄ − t̄0 − t̄d +

t̄p

2
� + b1 exp�− �ph� t̄ − t̄0 −

t̄p

2
� + c1�t̄d�exp�− �ph� t̄ − t̄0 − t̄d −

t̄p

2
�� ,

�A10�

�1�t̄, t̄d� =
− �2b2

�ex + i�
�exp���ph − �ex − i��� t̄d −

t̄p

2
�exp�− �ph�t̄ − t̄0�� − exp�− ��ex + i���t̄ − t̄0��� , �A11�

�2�t̄, t̄d� =
− �2b2

�ex + i�
2 sinh� ��ph − �ex − i��tp

2
exp���ph − �ex − i��td�exp�− �ph�t̄ − t̄0�� , �A12�
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a1�t̄d� =
1

�ex
−

exp�− ��ex + i��t̄d�
�ph − �ex − i�

, �A13�

a2 =
1

�ph − �ex − i�
, a3 = −

1

�ph
, �A14�

b1 =
�ex + i�

�ph��ph − �ex − i��
, b2 =

− 2 sinh� ��ex + i��t̄p

2


�ph − �ex − i�
,

�A15�

c1�t̄d� =

− 2 sinh� ��ex + i��t̄p

2
exp�− ��ex + i��� t̄d +

t̄p

2
�

�ph − �ex − i�
.

�A16�

According to formulas �A2�, the dependence of the density

of generated excitons versus the time t̄ for t̄� t̄0+
t̄p

2 �that is,
when the pulse action has terminated� has the following
form:

nex�0, t̄� =
4�2

�ex
2 �C�t0��2sinh2��ext̄p

2
�e−2�ex�t̄−t̄0�. �A17�

When the second inequality in Eq. �28� is fulfilled, we obtain

nex�0, t̄� = �2�C�t0��2t̄p
2e−2�ex�t̄−t̄0�. �A18�

This formula is in accord with the result �32�.
According to Eqs. �A4� and �A5�, when the probe and the

pump pulses are separated �t̄d� t̄p�,

nph�k4, t̄� = �C�t0��2��2�t̄, t̄d��2. �A19�

Integrating Eq. �A19� over the time, we find

N�td� =
�4�C�t0��2�b2�2

�ex
2 + �2 f�t̄p,��exp�− �ex�t̄ − t̄0�� , �A20�

where

f�t̄p,�� =
e−�pht̄p

�ph
�cosh��ph − �ex�t̄p − cos �t̄p�

+
sinh �ext̄p

�ex
+

sinh �pht̄p

�ph
e−��ph−�ex�t̄p

+
2

��ph + �ex�2 + �2 ���ph + �ex�


�e−�pht̄p cos �t̄p − e�ext̄p� − �e−�pht̄p sinh �t̄p� .

�A21�

We see that the dependence of the time-integrated resulting
signal N on the delay time td for td� tp is the same as the
dependence of the density of the generated excitons nex ver-
sus the time t.

When the inequalities in Eqs. �28� and �29� are fulfilled,
we have f�t̄p ,��	 t̄p and �b2�2= ��ex

2 +�2�t̄p /�ph
2 and obtain the

following formula:

N�td� =
�4�C�t0��2t̄p

3

�ph
2 exp�− 2�ext̄d� , �A22�

that is, in accord with the result in Eq. �40�.
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